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Abstract 
 
We note that random energy loss at non-zero dispersion can increase the transverse emittance,  
We derive expressions for this effect in ionization cooling, and compare it with multiple 
scattering emittance heating.  The effect can be large when cooling with absorbers located at large 
dispersion and small β⊥ , and when cooling is attempted at larger energies.   
 
Introduction 
 
In this note we discuss the beam heating processes involved in ionization cooling.  In ionization 
cooling (µ-cooling), particles pass through a material medium and lose energy (momentum) 
through ionization interactions, and this is followed by beam reacceleration in rf cavities.[1, 2, 3, 
4, 5, 6]  The losses are parallel to the particle motion, and therefore include transverse and 
longitudinal momentum losses; the reacceleration restores only longitudinal momentum.  The loss 
of transverse momentum reduces particle emittances, cooling the beam.  However, the random 
process of multiple scattering in the material medium increases the rms beam divergence, adding 
a heating term.   
 
The basic differential equation for rms transverse cooling is: 
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where the first term is the energy-loss cooling effect and the second is the multiple scattering 
heating term.  Here εN is the normalized emittance, E is the beam energy, β = v/c and γ are the 
usual kinematic factors, dE/ds is the energy loss rate, θrms is the rms multiple scattering angle, LR 
is the material radiation length, β⊥  is the betatron function, and Es is the characteristic scattering 
energy (~13.6 MeV).[6]  (The normalized emittance is related to the geometric emittance ε⊥  by εN 
= ε⊥  (βγ), and the beam size is given by σ⊥  = (ε⊥ β⊥ )½.) 
 
Ionization cooling does not directly provide longitudinal cooling.  The equation for longitudinal 
cooling with energy loss is: 
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in which the first term is the cooling term and the second is the heating term caused by random 
fluctuations in the particle energy (energy straggling). This heating term is given approximately by: 

( ) gm/cm)MeV(
2

1
A
Z157.0

2
1ncmr4

ds

Ed
22

2
2

2
2

e
22

ee

2
rms








 β−γρ≅






 β−γπ=
∆

,  (3) 

 



where ne is the electron density in the material (ne=NAρZ/A).   
 
Longitudinal beam cooling can occur if the derivative ∂(dE/ds)/∂E > 0.  This energy loss can be 
estimated by the Bethe-Bloch equation[7]: 
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where NA is Avogadro’s number, ρ, A and Z are the density, atomic weight and number of the 
absorbing material, me and re are the mass and classical radius of the electron, (4πNAre

2mec2 = 
0.3071 MeV cm2/gm).  The ionization constant I is approximately 16 Z0.9 eV, and δ is the density 
effect factor, which is small for low-energy µ′s.  The derivative of this energy loss is negative (or 
naturally heating) for Eµ < ~ 0.3 GeV, and is only slightly positive for higher energies. 
 
However, the derivative can be enhanced by placing the absorbers where transverse position 
depends upon energy (nonzero dispersion) and where the absorber density or thickness also 
depends upon energy, such as in a wedge absorber.  In that case the cooling derivative is rewritten 
as: 
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where ρ′/ρ0 is the relative change in density with respect to transverse position, ρ0 is the reference 
density associated with dE/ds, and η is the dispersion (η = d x /d(∆p/p)). The partition number gL 
describes the cooling rate related to the mean momentum loss, and the wedge configuration increases 
the longitudinal partition number by ηρ′/ρ0.  It also decreases the corresponding transverse partition 
number by the same amount: gx → (1-ηρ′/ρ0), which decreases the transverse cooling.  The sum of 
the cooling rates or partition numbers (over x, y, and L) remains constant; a similar invariant sum of 
cooling rates, with emittance exchange from radiation at nonzero dispersion, occurs in radiation 
damping of electrons. 
 
In radiation damping, fluctuations in energy loss at nonzero dispersion perturb the transverse motion, 
and thereby increase the transverse emittance.  This effect is the dominant transverse heating effect in 
radiation cooling.  The same type of heating effect also occurs in ionization cooling, when random 
energy loss occurs at non-zero dispersion.   In previous studies this particular heating term was not 
explicitly included, since the bulk of the energy-loss cooling was expected to occur at zero 
dispersion, and the multiple-scattering heating term (see eq. 1) is much larger, and (as discussed 
below) it remains much larger with energy loss at moderate dispersions.  More recent studies by C.-
X. Wang and K-J. Kim have included expressions for this and other coupling effects in their more 
complete treatments of 6-D ionization cooling theory.[8, 9].   
 
However, recent studies of ionization cooling have included extended insertions with energy loss 
at non-zero dispersion, and dispersive random energy loss can cause nontrivial transverse 
emittance increase.  In this note we calculate the size of this transverse heating term, adding it to 
the cooling formalism, and compare it with the multiple scattering heating terms.  Design 
guidelines to limit the heating effects are discussed. 

  
Calculation of the heating effect 

 
The present discussion follows similar treatments on the similar effect in radiation damping.  We 
consider the effects of  a random energy loss δE, leading to a change of momentum δp = δp/p = 



1/β2 δE/E.  We assume that the random energy fluctuation occurs at a point of the beam transport 
lattice with dispersion η, η′ , and betatron functions βx, αx, and γx = (1+αx

2)/βx.  We express the 
transverse motion in terms of the invariant amplitude function ax where: 
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x and x′ =dx/ds are the local transverse motion coordinates, and we have placed the dispersion in 
the x-plane.  When a particle changes δp/p by a random amount δ, its position and transverse 
velocity do not change.  However the dispersive part of its position changes by ηδ and its 
transverse velocity changes by η′δ, and that implies the transverse motion parameters x, x′ 
change by  -ηδ and -η′δ, respectively.   Since the random energy loss is uncorrelated with 
position the rms change in amplitude can be written as: 
 
   ( 222

xx
2

x
2

xx
2

x
2
x xxxxa δΗ=δη′β+η′ηα+ηγ=′β+′α+γ∆=∆ )   (7) 

 
where we have introduced the parameter H = , that was previously used in 
radiation cooling. 
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From the relationship between amplitude and rms normalized emittance, that is given by: εN,rms = 
βγ 〈a2〉/2, we can find an expression for the increase in emittance: 
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Including eq. 3 we can rewrite this as: 
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It is useful to compare this term for transverse emittance increase through straggling at non-zero 
dispersion with the multiple-scattering induced emittance heating.  This comparison is somewhat 
material-dependent through LR, ρ, Z, A. For low-Z materials used in ionization cooling we use 
the following properties: 

For H2, ρ = 0.071 gm/cm3, Z=1, A=1, LR =865cm, dE/ds = 0.292 MeV/cm, 
For LiH, ρ = 0.79 gm/cm3, Z=1+3, A=1+7, LR =102cm, dE/ds = 1.34 MeV/cm, 
For Be, ρ = 1.85 gm/cm3, Z=4, A=9, LR =35.3cm, dE/ds = 2.98 MeV/cm. 

To simplify the comparisons we set the beam at a waist in dispersion and betatron motion (η′=0, 
αx = 0, γx=1/βx).  (This should be the optimal location for cooling absorbers.)  We also use the 
relativistic approximation β=1.  Under these assumptions, the heating terms can be evaluated: 

For H2, the multiple scattering heating term is dεN/ds ≅  9.6×10-6 βx/γ, and the straggling-
based heating term is dεN/ds ≅  2.5×10-7 γη2/βx. 

For LiH, the multiple scattering heating term is dεN/ds ≅  8.1×10-5 βx/γ, and the straggling-
based heating term is dεN/ds ≅  1.4×10-6 γη2/βx. 

For Be, the multiple scattering heating term is dεN/ds ≅  2.35×10-4 βx/γ, and the straggling-
based heating term is dεN/ds ≅  2.9×10-6 γη2/βx. 



In each of these examples the scattering-based heating term is larger, unless η2  >> βx
2/γ2  The 

crossover occurs at η ≅  6βx/γ for hydrogen absorbers, and at η ≅  9βx/γ  for Be.  Note that this is a 
weighted average over all absorbers; a cooling system that has most of its absorbers at zero-
dispersion inserts would be scattering dominated.  

 
Examples 
 
In recent studies, emittance exchange sections have been developed which include absorbers at 
regions of nonzero dispersion, where dispersion-straggling emittance increase can occur.  In this 
section we explore some suggested examples and indicate the relative importance of this effect.  
 

Kirk, Garren and Fukui have studied a ring cooler in which hydrogen absorbers are placed in low-
βx insertions with dispersion, and the absorber ends are wedge-shaped to obtain emittance 
exchange.[10]  In a particular example η= 45cm, η′= 0, βx = βy =25cm, and αx =αy = 0 at the 
absorber centers.  At these parameters, and at γ ≅  2, the scattering term is ~4× larger than the 
dispersion term.  The dispersion + straggling heating is not negligible, and becomes larger than 
the scattering term for γ > ~4, or Pµ > 400 MeV/c (with the same βx, η).  Relatively small lattice 
changes could enlarge it to unacceptable levels. 
 
Berg, Fernow, Palmer have an ionization cooling ring with hydrogen absorbers at focus points 
(waists) where the dispersion η is ~8cm, while the corresponding β⊥  is ~ 40cm.[11]  The 
scattering heating term is ~250× larger than the dispersion term.  The dispersion + straggling 
heating is almost negligible. 
 
In general the dispersion-straggling effect becomes large with absorbers in regions with large 
dispersion and small β⊥ , and also at larger energies (large γ), where the energy straggling 
becomes large.  The constraint η << 10β⊥ /γ (within the absorbers) should be obeyed to avoid the 
effect. However, the effect must be included and carefully considered if that constraint is 
violated, probably using a more complete 6-D ionization cooling formalism, such as that 
developed by Wang and Kim.[8, 9]   
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